
similar reduction in mc.s. due to a decrease in the difference in velocities between the drops 
and the gas being cleaned. This conclusion is consistent with the findings in [i, 2]. 

In conclusion, we should note that the above-described effects are manifest to a greater 
degree in the co-current movement of the gas and drops in the direction opposite to that of 
gravity. 

NOTATION 

~, cleaning efficiency; P, (AP), pressure, pressure drop; z, longitudinal coordinate; ~, 
friction coefficient; d, diameter; W, velocity; p, density; o, surface tension; ~, volumetric 
vapor content; N, number of drops per unit volume; 6, angle of inclination of generatrix of 
cone; G, flow rate; m, removal coefficient; g, gravitational acceleration; We, Weber criteri- 
onal number. Indices: ", ', gas, liquid; E, total value; d, s, drop, solid particle; m, 
maximum value; fr, friction; wa, wall; a, acceleration; g, weight component; 0, quantity re- 
ferred to the inlet section; n, most probable value. 
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ELECTRODIFFUSIVE DIAGNOSIS OF THE VISCOELASTIC PROPERTIES 

OF POLYMER SOLUTIONS ON A ROTATING SPHERICAL ELECTRODE 

Z. P. Shul'man, N. A. Pokryvailo, O. Vain, 
and I. I. Gol'bina 

UDC 532.135:53.082.75 

This article examines the feasibility of measuring normal stresses from data from 
electrochemical diagnosis over the surface of a rotating sphere. 

The rotation of a Sphere in a liquid causes a secondary meridional flow as well as the 
main circular flow. Such flow is centrifugal for Newtonian fluids, with flow toward a pole 
and flow back to the region of the equator. In rotational shear flow of viscoelastic liquids, 
nonisotropic normal stresses are created. These stresses either lower the rate of the cen- 
trifugal flow or convert it into centripetal flow. In the last case, the liquid flows over 
the sphere in the equator region and flows back from the pole region. These effects were 
first examined by Giesekus [i]. Quantitative calculations of the flow of a viscoelastic sec- 
ond-order fluid about a rotating sphere [i, 2] make it possible to determine the normal 
stresses on the basis of study of the kinematics of the secondary meridional flows. Such ex- 
periments are usually performed by visualization of the flow about a rotating sphere [3]. 
Since the intensity of the meridional flow decreases very rapidly with increasing distance 
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from the surface of the sphere, the results of these experiments are qualitative. Consequent- 
ly, the use of visualization is limited to strongly elastic and viscoelastic fluids. More re- 
liable for quantitative study of the kinematics of meridional flows are methods of indirectly 
determinng the wall gradien t of meridional velocity on the basis of measurements of the rate 
of convective heat and mass transfer. The electrochemical method [4] may be the most advant- 
ageous of these methods from the point of view of sensitivity and constancy of the initial 
properties of the fluid. It should be noted that instrumental methods of measuring the differ- 
ence in normal stresses (such as with a Weissenberg rheogoniometer) are inapplicable in weak 
polymer solutions at shear rates less than 10 3 sec -l. We will examine the possibility of 
measuring the difference in normal stresses from data from electrochemical diagnosis of the 
secondary meridioinal flow about the surface of a rotating sphere. The rheodynamic theory of 
such flows was developed for fluids for which the following differences in normal stresses 
occurs in simple shear flow along with the shear stresses Tl2: 

~12 = n } '  T l l - -  T22 = u 2' T22 - -  T33 : ~2} ~" ( l )  

In contrast to more realistic models of viscoelastic media, here we assume that the material 
coefficients q, ~i, and ~2 are constant, i.e., are independent of the shear rate. The ap- 
proximate solution of the equations of motion is based on the following representations [5]. 
With sufficiently slow rotation of the sphere in an infinite fluid having a constant viscos- 
ity, primary circular flow with the following distribution of angular velocities is established 

�9 ~ = Q (R/r) 3 sin @. ( 2 )  

Such a flow is viscometric and in a viscoelastic fluid is accompanied by the creation of a 
difference in the normal stresses 

. . . . .  , ,  r ~ r - - ~ o o  v~?t  ( 3 )  

The shear rate field ~(r, 0), with allowance for (2), is expressed by the relation 

= - -  sin Or 0 ~  = 3Q sin @ (B/r)< ( 4 )  

Due to the action of the elastic stresses (3) and inertia 0V~ , secondary meridional flows 
with corresponding viscous drag are created in the fluid. As a result, the equations of mo- 
tion for the stream function X 

Vo = sin - t  Or-~O~X, V~--~ - - s in -~Or-~0~Z ( 5 )  

can be represented in the form 

s in - I  O[O~r+ r-~sin 00o s i n - i  @0o]~Z = P ~ - - P N ,  ( 6 )  

where 

Pc = - -  P (ctg e O~ --. r-* Oo) V$ = 6OPfY (R/r)  5 s i n e  cos e ;  (7) 

P u  = - -  (ctgO Or - -  r - 1 0 o ) ( % + - - - ~ e o ) - -  r-2O~rZOo (vrr - -  "coo) = 72vNQ" R -j  (R/r) 7 sin @ cos 8,; ( 8 )  

~N = ~ + 2~ (9) 

(usually, vN = "l, since I v 2 [  << I"11). 

The solution of biharmonic equation (6) with the corresponding boundary conditions can 
be reduced to the following simple form [6] 

pfpR5 1 - -  - 1 Ab 4 sin~-@ cosO,  ( 1 0 )  
Z= 8~1 \ r , 

where 

Ab - v~ (ii) 
pR ~ 

The corresponding profile of the gradient of meridional velocities over the surface of the 
sphere can be expressed as 

?m(O) = O~Vol~_n _ 1 Q R e ( 1 - - 6 A b ) s i n 2 O  cos O, (12) 
'-- 4 
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where 

Re QRsP ( 13 ) 

As was shown in [i, 5], in deriving Eq. (i0) it is possible to ignore terms of the order 
~R3Re 2. A more detailed analysis for a Newtonian fluid showed that Eq. (10) is satisfactorily 
accurate for the range Re < 10. A serious limitation in the derivation of this equation is 
the assumption of constancy of the material coefficients q and VN. Thus, an evaluation should 
be made of the values of i corresponding to values of the material functions N(#) and VN(i). 

The relation q(#) primarily characterizes the structure of the primary circular rota- 
tional flow. It is described by Eq. (2) if the viscosity is constant in the range # < #V; 7V 
is the maximum value of the shear rate of the equator of the sphere, determined from (4) 
through the relation 

#v = 3e (14) 

With a variable q(#), the stream function X for the mean shear velocity ~ = iN can be express- 
ed by Eq. (i0). Here, it should be considered that the reason for the secondary flows is not 
the elastic stresses themselves but the nontrivial value of PN characterizing their nonuni- 
formity. This leads to the following estimate: 

: ,! :eP dv/.[ p dv: 1,3 , ( is)  
v v 

where the fields of ~ and PN from (h) and (8) are integrated over the entire volume V of the 
fluid. 

Attempts have been made to use a rotating sphere to determine the elastic stresses in 
fluids [3, 8-10]. However, methods of flow visualization were used in each case, and these 
methods require the use of relatively large spheres. The sensitivity and accuracy of such 
measurements is therefore limited to large Reynolds numbers Re ~ R 2 and low values of Ab - R -2. 
The electrochemical method is free of these limitations. It is based on the theory of convect- 
ive diffusion in an approximation of a concentrated boundary layer on axisymmetric electrodes. 
Within the framework of this approximation, it is possible to ignore diffusion currents over 
the surface of the sphere and, by considering the thinness of the diffusion layer (Sc >> I), 
to simplify the stream function: 

% . . . .  8~ r 6 ~N sin~@cosO. (16) 

The equation of steady convective diffusion here takes the form 

VrO~C + VOr OoC=D(O~C + 2r O~C) , (17)  

where Vr and V0 are known coordinate functions satisfying the continuity equation: 

I i 
Vr  - - -  0o%, Vo : - -  Or%. ( 1 8 )  

r s sin O r sin @ 

Equation (17) can be written as follows in the variables X and O: 

DR-I[2A[(O)l-I12 sin-tOOoC = O~%1(sO~C, 

where 

~2R3 ( 1 ) Af (O) 4~ ORS -- 6 YU, sin sO cos O, 

with the boundary conditions 

( 1 9 )  

C = Co for %-~ oo or O<O0, (20) 

C---- 0 for %= 0~dO>O 0. 

Solution of the equation of convective diffusion leads to the following expression for the mean 
densities of diffusion current: 

IN = 0,4891 q)~ FmCo (DSf~2RP/rl) t!a I 1 -- 6Ab [1~, (21) 
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a 1 b~___ r 

Fig. i. Configuration of rotating spherical 
electrodes and diagram of secondary meridion- 
al flows: a) rotating spherical electrode 
with a peripheral sensitive element, centrip- 
etal flow at I/6 < Ab < i/2; b) rotating pole 
electrode, centripetal flow at Ab > i/2. 

where 

@i @i 

depends  o n l y  on t h e  g e o m e t r y  o f  t h e  w o r k i n g  e l e c t r o d e ,  a d i a g r a m  o f  which  i s  shown in  F i g .  1 
a l o n g  w i t h  t h e  f l o w  r e g i m e s .  For  a Newton ian  f l u i d ,  Ab = 0, and Eq. (21)  i s  s i m p l i f i e d :  

Iv = 0,4891 9e FmCo(D~Q~RO/q)~3. (23)  

Tests we conducted [ii] with Newtonian equimolar solutions of potassium ferro- and ferri- 
cyanide on a rotating spherical pole electrode (cathode) confirmed that the results obtained 
agree to within 5% with Eq. (23) in the range Recr < Re < i0. Thus, Eq. (21) can also be 
considered suitable for viscoelastic solutions - electrolytes - in the indirect determination 
of VN, since all of the other parameters in (21) are found independently. Proceeding on the 
basis of (21) and (23), we obtain 

VN -- pR~ [1 __. (1N/lv)3]. (24)  
6 

The minus sign corresponds to the centrifugal regime, 6Ab < i; the plus sign corresponds to 
centripetal flow over the surface of the sphere, 6Ab > i (here, the flow may be different far 
from the surface). The orientation of the flow was determined visually in preliminary tests. 

An initial series of tests was conducted at the Institute of Heat and Mass Transfer of 
the Belorussian Academy of Sciences with relatively concentrated solutions of polyethylene 
oxide (PEO) WSR-301. The value of ~N for PEO can be measured with a Weissenberg rheogoniom- 
eter at large shear rates. Then experiments were conducted on mainly dilute polymer solu- 
tions (to 100 ppm) at the Institute of Theoretical Foundations of Chemical Processes of the 
Czechoslovak Academy of Sciences [12]. 

A "Reotest II" rotational viscometer was used in the tests. A spherical pole electrode 
connected to an LP7e polarograph was installed on the spindle of the viscometer. More de- 
tailed information on the setup can be found in [ii, 16]. We used spheres 2.85, 5, 10, and 
20 mm in diameter. Platinum wire electrodes were mounted flush against the surface of the 
pole of the sphere. The setup allowed multiple-stage regulation of rotational velocity from 
0.03 to 25.2 rad.sec -I. Viscosity was measured in a broad range of shear rates with capil- 
lary and rotational viscometers. Preliminary tests showed that the viscosity and the coeffi- 
cient of the normal stresses depend appreciably on the batch of the polymer, the time of its 
storage, and the method used to prepare the solution. The electrochemically active compon- 
ents of the solution were potassium ferro- and ferricyanide (C = 0.025 kmole.m-3). A 4% ad- 
dition of K2SO ~ was made as the background electrolyte. The diffusion coefficient D of the 
depolarizer was determined with one of the spherical pole electrodes by analyzing the transi- 
tional I-t curves under potentiostatic conditions [13] and with a kinematic regime at the 
forward [ii] (Ab < 1/6) or rear [14] (Ab > i/6) critical point. 

A series of experiments was conducted to determine VN of the sample of WSR-301PEO, for 
which we had data on the measured difference in normal stresses. 

Figure 2 shows the dependence of the steady-state densities of diffusion current I on the 
angular velocity for i0- and 20-mm-diameter spheres. Also shown are values of IV calculated 
from Eq. (23). Here, the value of N in (23) was taken from the results of viscometric meas- 
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Fig. 2. Dependence of limiting diffusion current on angular 
velocity: I(~) for the 10-mm-diameter electrode (i) and 20- 
mm-diameter electrode (2); IV(g) for the 10-~-diameter elec- 
trode (3) and 20-mm-diameter electrode (4). 

Fig. 3. Rheological characteristics of a 0.35% solution of 
PEO WSR-301 with EX-additions at 20~ i, 2) vN(~) for a 
spherical pole electrode i0 and 20 mm in diameter, respec- 
tively; 3) flow curve; 4, 5) data from measurement of ~i and 

with a Weissenberg rheogoniometer for 0.35 and 0.5% solu- 
tions of PEO, respectively; 6) values of n for a 0.5% solu- 
tion of PEO ("old" batch). ~i, VN, mPa'sec2; ~, mPa-sec. 

Fig. 4. Normal stresses for different solutions of PEO WSR- 
301: i) 0.5% solution; 2) 0.5% solution ("old" batch); 3) 
0.3% solution; 4) 0.2% solution; 5) 0.1% solution; 6, 7) for 
comparison, data from rheogoniometric measurements by other 
authors for a 0.5% solution of PEO. I, II, III, IV) Data 
calculated from Eq. (26), ~0 = 250, for 0.i, 0.2, 0.3, and 
0.5% solutions of PEO. nN, mPa'sec2; ~N, sec -i. 

urements of n = N(~V), iV = 3 n. It is apparent from the figure that a decrease in angular 
velocity is accompanied by a change from the centrifugal regime [test points i and 2 are 
located below the data for IV(n)] to the centripetal regime [test points i and 2 are accord- 
ingly located above IV(n)]. This change in regimes was confirmed by visual observations. 
The substantial decrease in current densities seen in Fig. 2 for both spheres corresponds to 
the region of values of n, where 

] 
~N = -A---- ~ R  ~- (25) 

The values of VN from Eq. (25) can be analyzed by using only part of the data shown in Fig. 2. 
These are the data corresponding to the region of creeping flow Re < i0 and for which the el- 
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fects of free convection are still weak, i.e., there is agreement with the conclusions made 
in [ii]. Results of determination of VN are shown in Fig. 3 together with data on viscosity. 
Also shown for comparison are data for a solution of WSR-301, C = 0.35%, obtained with a 
Weissenberg rheogoniometer. With allowance for the limited sensitivity of the rheogoniometer, 
the data were obtained at relatively high shear rates compared to our case. Extrapolation to 
the region of small values of i showed (Fig. 3) that they agree well. The use of smaller 
spherical electrodes made it possible to study the viscoelastic properties of more dilute poly- 
mer solutions. Figure 4 shows results of measurements of VN for solutions of PEO WSR-301 with 
concentrations of 0.5, 0.i, 0.2, and 0.3%. Also shown for comparison are data from electro- 
diffusive and rheogoniometric measurements of the coefficients of the difference in normal 
stresses for a PEO solution with C = 0.5%.* The agreement is good in this case as well. Here, 
an "older" batch of PEO (difference of three years) was used. It was characterized by lower 
values of viscosity than in the previous instance (see Fig. 3) and the coefficients ~N and v l 
shown in Fig. 4. It is not possible to compare our data with other measurements in the region 
of low shear rates due to the lack of such measurements. However, a qualitative comparison 
can be made for i § 0 by using the method of determining the initial coefficient of the normal 
stresses go proposed by Malkin [15] and based on the approximate relation 

~o =: 21~ ~10 , (26) 
a(lz-i~l) B 

w h e r e  n ,  q 0 ,  a n d  B a r e  d e t e r m i n e d  on t h e  b a s i s  o f  t h e  m e a s u r e d  r e l a t i o n  q (Y)  (q0 i s  t h e  m a x i -  
mum N e w t o n i a n  v i s c o s i t y ;  B i s  t h e  maximum v a l u e  o f  ~ c o r r e s p o n d i n g  t o  t h e  c o n d i t i o n  q = q 0 ) .  
The resulting calculated values of 250(v 0 = 2~ 0) agree qualitatively with the values of v 0 ob- 
tained by extrapolation of the results of electrodiffusive measurements of ~(i) to the region 
i + 0 (see Fig. 4). 

It should be noted that a further decrease in the diameter of the sphere could, first, 
significantly increase the sensitivity of the method and, second, expand the range of its ap- 
plication to higher values of shear rate. However, it will be necessary to develop an ap- 
propriate rheodynamic model in order to more correctly apply the method to fluids with sig- 
nificantly variable material coefficients q, ~i, and v=. 

NOTATION 

C, concentration of depolarizer, kmole'm -3, and polymer, ppm; D, diffusion coefficient 
of depolarizer, m2.sec-1; r, ~, q, spherical coordinates; R, radius of sphere, m; RE, radius 
of electrode, m; i, shear rate for the primry viscometric flow, sec-1; vl, v2, VN, coeffi- 
cients of the normal stresses, Pa.sec2; p, density, kg-m-3; q, viscosity, Pa-sec; ~, angular 
velocity, rad.sec- ; I, limiting diffusion current, A.m-2; IV, IN, theoretical values of cur- 
rent I for viscoelastic and Newtonian fluids; Re = ~R2p/q, Reynolds number; n, flow index. 
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FLOW AND HEAT TRANSFER OF AN ANOMALOUSLY VISCOUS FLUID 

IN THE GAPBETWEEN ROTATION AND STATIONARY DISKS 

WITH NONUNIFORM PRESSI~E ABOUT THE PERIMETER 

V. M. Shapovalov, N. V. Tyabin, and L. M. Beder UDC 532.135:536.24 

The problem of bypass flow of a liquid under the influence of nonuniform pressure 
about the perimeter is solved. 

One of the more promising pumps for transporting melts of polymers and high-viscosity 
liquids is the so-called circular pump [I]. It has several technicoeconomic advantages over 
conventionl screw pumps, particularly high efficiency. The pressure about the perimeter of 
a circular pump is nonuniform, which results in bypass flow of the liquid in the space between 
the body and the end of the rotor. It is interesting to evaluate the size of this flow, since 
it affects the overall efficiency of the pump. Also, analysis of this type of flow may prove 
useful in the design of precision-metering spur-gear pumps, for which stability of flow rate 
is very important. The end seal can be regarded as a disk-disk system in which the liquid is 
subjected to intensive shear strains. A flow diagram is presented in Fig. I. The top disk 
(pump body) is stationary, while the bottom disk (pump rotor) rotates with an angular veloc- 
ity ~. We will ignore the hydrodynamic effect of the shaft. A bridge separating the intake 
and delivery zones is located at the point r = R, ~ = 0. The bridge has negligibly small 
angular dimensions and its hydrodynamic effect can be ignored. The velocity field is a three- 
dimensional shear field. 

Considering the condition h << R, we assume that creeping flow is realized in the gap, 
and the forces of gravity and inertia can be ignored. Here, ~P/Bz = 0, and there is no flow 
in the z direction. With allowance for these assumptions, the following boundary-value prob- 
lem is formulated: 

Or - az \ az ] '  ( l ) 
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